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ABSTRACT

Accelerated life testing of a product under more severe

than normal condition is commonly used to reduce test time and

cost. Data collected at such accelerated conditions is used to

obtain estimates of parameters of a stress translation function

which is then used to make inference about the products per-

formance under normal conditions. This problem is considered

when the product is a p component series system with Weibull

distributed component lifetimes having a common shape parameter.

A general stress translation function is used and estimates of

model parameters are obtained for various censoring schemes.
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1. INTRODUCTION

Accelerated life testing of a product is often used to

obtain information on its performance under normal operating

condition'. Such testing involves subjecting test items to

conditions more severe than encountered in the item's everyday

use. This results in decreasing the item's mean life and leads

to reduced test time and experimental costs. In engineering

applications accelerated conditions are produced by testing

items at higher than normal temperature, load, voltage, pressure,

etc., while in biological applications accelerated conditions

arise from large doses of a chemical or radiological agents. In

all cases the data collected at the high stresses is used to

extrapolate to some low stress where testing is not feasiable.

We shall consider the problem of accelerated life testing

when the item of interest is a p-component series system. Here

the failure of any one of p components causes the system to fail.

An observation on such a system consists of the system failure

time and knowledge of which component's failure caused the

system to fail. In the case where there is data only at opera-

ting conditions, David and Moeschberger (1978) describe some of

the estimation techniques.

Several papers have been written on analyzing accelerated

life tests for series systems. Assuming that for a given stress

V each failure mode follows an independent log normal distribu-

tion with parameters pi(v) = ai + i V and 2 constant with
i i V n icosatwh

respect to V, i = 1, ..., P, Nelson (1973) obtains graphical

estimates of ai and i when there is no censoring. Maximum

likelihood estimates of ai, and a are obtained in Nelson

(1974).

Klein and Basu (1981a) have considered the above problem

when the component lifetimes are exponentially distributed and

the data is type I, type II or progressively censored. Klein

and Basu (1980b) have considered this problem when the component



lifetimes follow a Weibull distribution with unequal shape

parameters. In this report we consider this problem when the

components have a common, unknown shape parameter.

In section 2 we present the model we shall use for

accelerated lifetests in the competing risk framework. In

section 3 we obtain estimates of model parameters for type II

and progressively censored data. In section 4 an illustrative

example is presented.

2. THE MODEL

The problem considered in the sequel is as follows. Consi-

der a p component system with component lifetimes X1, X2, ...,

X . Suppose that under normal stress conditions these compo-p
nents have long lifetimes making testing at such conditions

unfeasible. To reduce test time and cost, s stresses, V1. ... ,

V are selected and a life test is conducted at constant appli-

cation of the selected stress. We wish to use this information

to make inference about the component lifetimes under normal

stress conditions.

Consider the following model introduced by Klein and Basu

(1980b) elsewhere.

At a stress Vl, i = 1, ..., s assume that the jth component

has a hazard rate given by

hi(x, Vi; aj, %) = gj(x, aj)lj(Vi, %) (2.1)
i I, .. ,s = j , ... p.

For gj(x, a) a Weibull form is assumed, that is

gj(x,) - at (t - 1 , a > 0, t > 0, (2.2)

where a is the same unknown constant for each component and this

constant is independent of the stress V.

For )j(V, j) we assume a model of the form
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k

X t O(V Aj exp ( 1 0ajt j (V) } . (2.3)

where 8jo(V) = 1 and 0j1(V), ... , jkj(V) are kj non-decreasing

functions of V. The Oj(*)'s may differ from one component to

another.

This model includes the standard models, namely, the power

rule with X (V V  The Arrhenius reaction rate
model with A (V, B) = exp(O0 - S01/V); and the Eyring model

for a single stress with X (VI a) = VBi exp(ajO - B 2 /V) as

special cases.

The model also can be derived from the interpretation of

the effects of a carcinogen on a cell as proposed by Armitage

and Doll (1961). To produce cancer in a single cell, k indepen-

dent events must occur. The effect of an increased dose of a

carcinogen is to increase the rate at which these k events occur.

If, for the jth disease, this increase is of the form

exp(sj£tjt(V)) for I = 1, ..., k the model (2.3) is obtained.

If this increase is assumed linear the model of Hartley and

Sielkin (1977) is obtained. Thus the model of Hartley and

Sielkin is a first order Taylor Series approximation to (2.3)

when ej£(V) -V for X = , ..., k .

Consider an accelerated life test conducted at constant

applications of s stress level, V1 , ..., Vs . Let X 1l, X12,

... , Xp denote the component lifetimes of the p component

series system put on test at stress V . Assume that the compo-

nent lifetimes are independent. We are not allowed to observe

Xill ..., Xip directly but, instead, we observe

" ¥ . minimum(Xil, ... 9 Xip) and an indicator variable which

describes which of the p components Is the minimum. We shall
use the method of maximum likelihood to estimate a and =

(jO, ... 1, ... , p for various censoring schemes.



3. ESTIMATION OF PARAMETERS

In this section we obtain maximum likelihood estimates for

a and , j 1, ..., p for type II and progressively censored

accelerated life tests. Since these estimates must be obtained

numerically we also show how initialestimates can be obtained by

a least square technique. We then obtain point and interval

estimates for the component parameters at the use stress.

3.1 TYPE II CENSORING

For this censoring scheme n i systems are put on test at

each of the s stress levels and testing continues until a

preassigned number r i have failed at which time testing at that

stress level is terminated. Let the ordered failure times of

the ri systems which fail be denoted by Yi(l) Yi(2) ' "'"

Yi(ri ) . Let rj denote the number of the ri systems which

failued due to failure of the j th component j = 1, ... , p. The

contribution to the total likelihood from the ni systems on test

at stress V is
i

p i 0r ri,)

Li M n p ij ..
J =1

where

ri
T , (a = I1Yic nird ~ , ..., s (3.1.2)

a a

The overall likelihood is L - n Li so

L j r rj ? Oe(V) Ti(a)exp +(-)e(Vi)

+ rji -ra + (0-l)P 1 (3.1.3)



where

P= ren

The likelihood equations are

S-TM (Ot){ exp(3 6t (4 e~V)} +M + P
i-i i-i J

(3.1.4)

whereT~)~ ri i()i 

i =1, .. ,a, and

6fL 0 = O(V )[nij-Ti(a~exp(
60ju lJ = O p)I

j 1,....p u =1, , k 1(3.1.5)

Tesolutionsa cit j-1,., p, L=1, ... , k of 3.1.4

and 3.1.5 are the respective maximum likelihood estimators.

The second partial derivative of L are

T h e , Xit(a + --where :3.1.6)

62 i a

i

~~5W i jw i ij I~..pun,**
ju n

(3.1.7)

62 inL
60 60 Xi A±Tj(a) e w(Vi)%j(Vi) (3.1.8)
ju iv i.1

jin,..p u 0. ., k v-0,. ... , k

IIda



and,

60j 60 g O 0 y~ j=1 . p (3.1.9)

To find E(T()) E(t~1i(cx)), E(T (2 )(q)) note that the
unordered Yit's have a Weibull distribution with density

f~)a-1 a

The mth order statistic from a Weibull has density

a

1()=(m-1)1(n 1 -m)l (a i 1(m)

exp (-(n -m4.1) XiY a 0 < Y < 00. (3.1.10)

Now

E= (Yl a [XayO- [-x(yX) -
i~m) 0 (m-l)t(n i r)l i

exp(-(n 1 -M+1)Yax l)dY

ni 0

i k-O 0u ~ ~ d

m nikml (n -rn+l+k)T

Hence



rn-

(1) m k-

+,, (n r (n-r r (,} k 1

* (-4 r+1) (3.1.12)-m~~l

Aimlso , siia conlmputationsmkI

E(T~2() X r -,mk')

ma mniml k= (mi

1-

+i riO (n k-i

-
2 (ly -e4-r +) (3.1.12)l)]1



P°LLet a- -E( L), Let C be the column vector
oa2  Cj

Cj E-(y jL), ... -. (a6jj T = 1, ... , p, and

let B be the kj+l by 5+1 matrix whose elements are

= 62 'T& L
bl = -E( 6 ) u - 0, ..., k., w = O, ..., k

The inverse of the asymptotic correlation matrix is

-1 lB 10
(-_ a /whereB B 2 B - (3.1.14)

T T T T -1

and C i (CT1 C2  . p. The value of E is obtained by

substituting 3.1.11, 3.1.12, and 3.1.13 in the appropriate places

in 3.1.6, 3.1.7, and 3.1.8.

By a theorem of Rao (1973)

fB-+FE-1FT -FE- 1

Il = [where

F C B-1C, and E = a-C TB- C. (3.1.15)
A Am

A consistant estimator of E is obtained by using a and

j - 1, ..., p in the appropriate expressions 3.1.11, 3.1.12,

and 3.1.13.

3.2 TYPE I PROGRESSIVE CENSORING

For this censoring scheme Ni items are put on test at

stress Vi. Let Tilli12 ..., TiM, be fixed censoring times.

At censoring time T V, i - 1, ... ,Mi1 1 , a fixed number cit,

items are removed from the study. At time TiM either a fixed
i



number ciM items are removed from the test and testing
i

continues until all remaining items have failed or the test is

terminated with a random number ciM items still functioning.
i

This test scheme has the advantage of allowing for some items

with extremely long lifetimes to be encluded in the study.

Clearly the usual type I fixed time censoring is a special case

of this consoring scheme with Mi = 1 and cii random. We assume

that Ni is sufficiently large so that at least cii, I = 1, ... ,

'k-1' Mi items are still functioning to be censored.
M i

Let ni = Ni - ik be the number of systems which' i=l 

failed and let Y Yi2' "''. Y in denote the failure times.

i
Let rj denote the number of systems which fail from cause j at

stress V , j = 1, ..., p, i = 1, ..., s. The Ni items on test

at stress Vi, i = 1, ..., s contribute

p ri n n  ]-1

Li H Xij exp(-XT ()) ) i(3.2.1)SJ=l i jiiY

to the total likelihood where

ni M
i i

Ti(a) " + I Tcitt (3.2.2)

Again the total log likelihood is given by 3.1.3 with Ti(a) as

ni ^

in 3.2.2 and Pi y " Maximum likelihood estimators a
1 -1

A

and j - 1, ..., p of a and 8 are obtained by solving

numerically 3.1.4 and 3.1.5 with

) n i  
Mi

T 1() Y' ¥in + ' t ritcit. (3.2.3)

The second partial derivatives of L are given by 3.1.6, 3.1.7,



3.1.8, and 3.1.9 with

T(2) . Iy( ) + I CCilTk(M Tit)2 (3.2.4)
£i z=l

We now calculate E(T (o)), E(Ti'1 (a)), and E(T( 2 ) M).

Consider any of the s-stress levels. For notational con-

venience we shall suppress the subscript i. Let N items be put

on test. Let 0 = T0 < ... < TM < TM+= - I be censoring points.

At time T., 2 i 1, ... , M, c, items are removed from test. For

k 1, ... , M-1, c I is a fixed constant while cM is either ran-

dom or fixed depending on if testing is terminated at TM or not.

M
Let n - N - I c be the number of items which are observed to

t=1

fail.
Let YI, ..., Yn denote the failure times of the n failures.

For k-, ... ,n, Y min(Xl2,, ... , Xp4) where Xj, is the

failure time of the jth component of the Lth item which fails.

By assumption the Y2k's have a Weibull distribution with survival

function

F(y) = exp(-Xy ), y > 0, a, X > 0 (3.2.5)

Let f2 denote the number of failures in the interval

[T4_l, t 2 ), i - 1, ... , M+1. Let U k, k - 1, ... , ft,

£ = 1, ..., M+1 denote the failure times of those ft items

which fail in the interval. Let

F2.- P(Y < T2 ) = 1 - exp(-XTa) i - 1, ... , M+1 (3.2.6)

denote the probability an item fails before time TV, and let

F4 1 - Ft.

Cohen (1963) shows that for cm a fixed constant

NF for I - 1
E(f2 ) -1 C

(N - I --)(F2  - Fj I) for i - 1, ... , M+1 (3.2.7)
k-l .k



For cm random 3.2.7 holds for £ 1, ... , H,
f£

Now for I - 1, ... , M let S - u and note that

fE

E(St EE( U~j ft)
i-i

- E(fk)E(UOj It 1 < U l < .

-Ij

The conditional density of U given Uje(Tt_1 , T,) is

OLXU -l exp (-Xu a )

fut(u) = Ftlif T 1 < u < T

otherwise

Thus

(U I T < u < T - 1 _l - t-F_

so

E )- .(N - I )( _+l _1 - (X +l)Ft)Z 2, ... M

(3.2.8)

and

E( N(l XT'1

We now consider separately the two possible cases for cM .

-ase 1. cM fixed.

For this case note that 3.4.8 holds for I - M + 1. So

M Ct+ +l
- - [T-

tu Ft ) -j+1

since To O, F 1 and VM+ 1 - 0 we have



M-1 1 M
=I E(S=) {N I C cTvr+l)
L-1

Mi

Ni- ci

Thus E(Ti(a)) i , i i, ... , s. (3.2.9)

Similarly,

(1)
E(T(1)(a)) {Ni - - )

i i

- ciz[x fu 2u exp(-u - Tij)du

i it

- - i a , where y is Euler's constant.

The integral must be evaluated numerically.

Also by similar computations

E(T 2 )(c)) ) Ni(R! - 2y + ) _ 23nXi(ly) + (3X,)'

- i cit[ f (ou)2ue i i)du

i it

2 A 2M gnu) ue-(-i i£du + X lii

+ TII( a il£ a /T ) a

Case II. cM random.

For this scheme all testing stops at time TM with CM items

still functioning. Clearly



So from 3.4.7
H

E(cM) -FM(N I -) . (3.2.12)

Thus

Hence

Mi-

1 iF
E(T i()) = jV Nj -Fi rik(l - )} (3.2.13)

i i F= im -

Similarly,

Sim

i i i i i m

9.-l T Fc

itt



+(Plrlx ) 2(. " -_ a

(I FL/Fi£)+XiTC£ [&A 1 2(in T,£g)2

i i

The asymptotic covariance matrix is obtained by making the

appropriate substitution in 3.1.6, 3.1.7 and 3.1.8.

3.3 INITIAL SOLUTIONS TO LIKELIHOOD EQUATIONS

To solve the likelihood equation numerically initial

estimates of the parameters which are close to the maximum

likelihood estimates are needed. To obtain such estimates we

shall first obtain an estimate of a, then transform the data

to exponential observations and apply a least squares technique.A

Consider any one of the s stress levels, vi. Let a. be an

estimate of a based on observations at this stress level only.

Such estimates can be obtained by using techniques described in

Mann, Schaffer and Singpurwalla (1974) or by graphical methods

described in Nelson (1972). These estimates are then pooled to

obtain an estimate a of a. If the a 's differ too much from

one stress level to the next this will cast doubt on the

assumption of equal shape parameters.

To obtain estimators of the 8's we first make the trans-

formation W =Y V i - 1, ... ' s, Z - 1, ... , ni. If ais

equal to the true a then Wil will have an exponential distri-
bution with hazard rate X V

Let TY(a) be defined by 3.1.1 or 3.2.1. One can show

that, using information collected at a single stress level only,

the maximum likelihood estimator of Aij is

krij/Ti (a)) (3.3.1)

say. For sufficiently large n
k

E(T i )  e j J8££(V )

0



and Var(li) - XijE(Ti(c)) (3.3.2)

Least squares estimates of the B$jts are obtained by using

weighted least squares as described in Draper and Smith (1966,
A

p. 77-81). Let n be the sXl column vector of the n i's. Let 8

be the s X k + 1 matrix defined by

0 = (ejt(vi)), = - 0, k i f 1, ..., s

and let B be the column vector (B0 0 . jk )T. The model of

interest is

_ eB + c (3.3.3)

where E(c) - 0 and Var(s) - A where A is the diagonal matrix

with elements Var(li) along the main diagonal. The weighted

least squares estimators of are

T A (oTAe )-1TA-1 . (3.3.4)

The variance of these estimators is

Var(a)- (eTA-1) - . (3.3.5)

3.4. ESTIMATION OF USE STRESS PARAMETER

Suppose an accelerated lifetest as been conducted according
to one of the censoring schemes discussed in sections 3.1 or

3.2. Let = Bk " "" ) and Ot be the maximum likelihood
j A

estimators of and a respectively. Let jj (Ejj) be the

(estimated) asympotic variance-covariance matrix of . Let

E (Z .) be the kj + 1 x 1 column vector whose X element is the
jot j A(estimated) asymptotic covariance of Bjt and a, £ = 0, ... , kj,

j p.Let 2 (^2
J - 1, ... , p. Let 02 (2 a) be the (estimated) asymptotic

variance of a. Let 0 be the matrix whose elements are all zero,

then the asymptotic variance matrix of ' A2, ... , , a) is

of the form



Ell 0 0 0 Elcl

0 o 12 0 0 2a

Z 0 0 (3.4.1)
0 0 p r

T T 2
la aa pa ctc*

Let E denote the estimated value of E.

We shall use this information to make inference about component

life under some use stress, V u
Recall that the scale parameter of the time to failure

distribution is given by

I k
= exp j - 1,9Y(Vu) i =l1 ... , p. (3.4.2)

at the use stress. The maximum likelihood estimator of X is

given by

u . exp t Ii Ojt(Vu) i - 1, ... , p (3.4.3)

This estimator is biased by a factor of exp(Oa /2) where
2  

0 (Vj j( e k (V )T "
ju (l e v), ... , el (Vu) j (1, Vu)(V), ... ,)

(3.4.4)

"An unbiased estimator of A is given byju

AJu u exp(-02 /2), j - 1, ... , p . (3.4.5)

Asymptotic (1 - y) x 100% confidence intervals for AJu are given

A A A

( Ajuexp(Z y/2'ju) (3.4.6)

where is the 1-y/2 th percentage point of a standard

normal random variable.



Consider now the cuinmulative hazard rate of the time to

failure distribution of the jt component which is, at time
t > 0 and stress V, given by

fk

Aju(t) - t aexp 1t a ejtVj)} j i 1, ... 9 p. (3.4.7)

jju

ance property, 
k

Aju M =tepI kjt~v, j jl. ,p. (3.4.8)

Now, asymptotically O'zA ju(t) has a normal distribution with mean

A u(t) and variance

(t) =(1, O6l(Vu) *... Eja ell) (Vu))

JU jiu jk(Vu) t)))

(3.4.9)

Hence A ju(t) is a biased estimator of A u(t). A reduced bias

estimator of A ju(t) is given by

A J(t) -.A J(t)exp(alut)2 J - 1, ... ' P, t > 0 (3.4.10)

which also has reduced mean squared error

A (l-y)xlOO% confidence interval for A ju(t) is given by

AA A 
A

Let F ju(t) - exp(-A (t)), t > 0 be the survival function

of the jth component. The maximum likelihood estimator of

1(t) isju

F ju(t) -exp(-A ju(t)) j -1 .,p, t > 0 (3.4.12)



Approximate (ly)xlOO% confidence intervals for FJu(t) are given

by A
,, exp(Z 1_/2ju) ,. exp(-ZlIy/2( j u)

FF(t ju -1 .JUF(t) J jfi, ... , p

(3.4.13)

3.5. DEPENDENT RISKS

The assumption of independent causes of failure may be

relaxed to include a class of Weibull distributions with depen-

dent causes of failure. To illustrate how this may be done we

shall consider the bivariate case with the obvious extension to

more than two risks.

Let X1, X2 denote the failure times of the two components

in a series system. Let U be the time until the system fails1
due to failure of the first component alone, U2 the time until

failure from the second component alone, and, U12 the time

until simultaneous failure of both components. At a stress V

assume that U., U2, U12 are independent Weibull random variables

with shape parameter a and scale parameter X (V, 0 ), j - 1, 2,

12, given by 2.1.2. Clearly X1 = min(U1 , U12) and X2 - min

(U2, U12). X1 and are both distributed Weibull with shape

parameter a and scale parameter XI(V, ) + XI2 (V, _l2),

A2 (V, A2) + A12 (V, .8,2), respectively. The joint survival

function of (XI, X2) is given by

* F(x 1, x2 ) = exp(-Al(V, A_)x,-X 2 (V, -_2)x2-Xl1 2 (V, _12)max(x1 ,x2)a).

This is the bivariate Weibull distribution proposed by Lee and

Thompson (1974).

To estimate the parameters we perform an accelerated life

test as described in the previous sections. The failure causes

are now failure from the first component alone, the second

component alone, and, simultaneous failure from both components.

Estimators of Al' A2 1 P12' and a can be obtained as before.

Estimates of the parameters of X, and X2 now follow in a

straight forward manner.



4. EXAMPLE

As an example of these procedures we shall consider an

example given in Nelson (1974a). The problem is to analyze an

accelerated life test conducted on Class-H insulation systems

for electric motors. There are three possible types of insula-

tion failures corresponding to distinct parts of the insulation

system, namely Turn, Phase, and Ground. The failure cause is

determined by an engineering examination of the failed motor.

The purpose of the experiment is to estimate the average

life of such insulation systems at a design temperature of

180"C. A median life of 20,000 hours is necessary for the

satisfactory performance of these insulation systems. To

reduce test time and cost an accelerated life test was conducted

at 4 accelerated temperatures, namely, 1900 C, 220* C, 2400 C,

and 260* C.

The accelerated life test was conducted by putting 10

motors on test at each of the 4 stress levels. Motors were run

until they failed, then the cause of failure was found and

isolated and motors were run until a second-failure occurred.

The results of this study are reported in Nelson (1974a). The

data followed a logl0 normal distribution so the Weibull theory

results do not apply.

To illustrate the results of the previous section Nelson's

example is reporduced by simulating the life test using a

Weibull model with shape parameter 1 for each failure cause.

The shift parameters are chosen by fitting an Arrhenius

Reaction Rate model to the estimated comportent medians obtained

by Nelson. The model is

Ai(V; 0.) exp(8O0 + BJl6JI(V)), j - 1, 2, 3 (4.1)

where e11(V) - -1000/V for J - 1, 2, 3 and V is the temperature

* in degrees absolute. The absolute temperature is 273.16 plus

the centrigrade temperature. The values of O, ), J = 1,

• r . .. . ,-,,Ill I I



2, 3 are as follows,

Table 4.2 True Values of

001

Turn 8.2607 8.0106

Phase 3.7748 6.1253

Ground 13.0340 10.6487

Twenty Weibull observations were generated at each of the four

stress levels. The data are in Table 4.1.

Using the data at each stress level only the two order

statistic estimates of a discussed in Derbey (1966) are
SA A A

a, = 2.224, a2 = 1.103, a3 = 1.260, and a4 - 1.155. This

suggests an initial estimate of a - 1.425 for a.

The data is now transformed by letting W = 1/1.425

i = 1, ..., s, k = 1, ..., ni and the least squares procedure

of section 3.3 is applied. The resulting initial estimate of

the a's are as follows

TURN =  (4.3136, 4.9144), OPHASE - (1.5206, 3.8801)

and

BGROUND = (6.1364, 6.1194)

The maximum likelihood estimates are obtained by using a

two stage Newton-Raphson procedure. In the first stage the

likelihood in maximized with respect to a using the O's

obtained in the previous stage. In the second stage, using

this a, the likelihood is maximized with respect to the B's.

The procedure is terminated when the relative increase in the

likelihood is no more than .0001.

In this case the two stage procedure terminated after 19
A

steps. The maximum likelihood estimators are a - 1.0995,A A
URN (6.6142, 7.5033), HASE - (4.1230, 6.6608), and

GROUND - (8.2946, 8.6483). The estimated covariance matrix

of (URN' PHASE' OGROUND' 0), computed from the results of

section 3.1 with ri - ni, is
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- '8.615 4.285 .0014 0.0 .0014 0.0 -.0035

4.285 2.138 0.0 0.0 0.0 0.0 0.0

.0014 0.0 25.387 12.577 .0014 0.0 -.0035

0.0 0.0 12.577 6.245 0.0 0.0 0.0

.0014 0.0 .0014 0.0 15.894 7.959 -.0035

0.0 0.0 0.0 0.0 7.959 3.997 0.0

-.0035 0.0 -.00353 0.0 -.0035 0.0 .0092

At the use stress of 1800C the estimates of component

survival at a mission time of 20,000 hours are .0763 for

turn failures. 90% confidence intervals for components

survival at 20,000 hours are

(.0013, .3688) for turn failures,

(.0004, .7872) for phase failures, and

(.00242, .8168) for ground failures.

The maximum likelihood estimates of the scale parameters

at 180°C are
TURN T .0000480, X .0000255, and AGROUND = .0000206.

The reduced bias estimates areAA

ATURN ' .0000454, PHASE =  000221, and AGROUND .0000184.

90% confidence intervals for the shape parameters are

(.0000275, .0000839) for turn failures,

(.0000105, .0000619) for phase failures, and

(.0000093, .0000455) for ground failures.
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